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Abstract

A mesh of nodes used in particle-in-cell simulations may be refined in some regions to obtain better local spatial res-
olution without adding excessive computational cost. Each refinement can be seen as a finer grid in a multiple-grid system.
The standard bilinear weighting method in two-dimensional (r–z) cylindrical coordinates using a multiple-grid system is
detailed and an inadequacy in the method is presented. A new algorithm of particle to node weighting in a multiple-grid
system is then described and compared to the standard bilinear weighting method in two-dimensional (r–z) cylindrical
coordinates. This description pays particular attention to the nodes near the interface between grids of differing cell-size.
The volume weighting method used in this study is geometrically similar to the standard bilinear PIC method in Cartesian
coordinates, but weights in proportion to the volumes of revolution of the areas about the z-axis, rather than the areas
themselves. As the volume weighting method has the axisymmetric geometry built in, it is a natural system to use in this
particular case. A full particle-in-cell (PIC) simulation of metal plasma-immersion ion implantation and deposition
(MePIIID) of a flat stage using three grids of cell size: 0.5 · 0.5, 1 · 1 and 2 · 2 mm; is performed and results are compared
to those obtained from a single-grid simulation with the same parameters. The multiple grid method compares very well to
the single-grid simulation.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Particle-in-cell (PIC) simulations have been extensively used in recent years for the modeling of plasmas [1–
3]. It typically involves weighting particles to a uniform grid of nodes, calculating the electromagnetic fields on
these nodes and interpolating the forces back to the particles [3]. When there is a need for higher spatial res-
olution in PIC simulations, it is common practice to reduce the cell size. Unfortunately this comes at a greatly
increased cost to computational power.

In situations where detail is needed in one part of the simulation region and not another, one can use two or
more grids of differing cell size. This has the advantage of using fewer nodes in the simulation, thereby
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.01.004

* Corresponding author. Tel.: +61 2 9351 3631; fax: +61 2 9351 7726.
E-mail address: cornet@physics.usyd.edu.au (C. Cornet).

mailto:cornet@physics.usyd.edu.au


C. Cornet, D.T.K. Kwok / Journal of Computational Physics 225 (2007) 808–828 809
reducing computation time, without sacrificing detail where it is needed. This method has been successfully
implemented in various finite-difference simulations [4,5]. We aim to merge this multiple-grid method and
the well-established PIC method. The calculation of the electric potential on a multiple-grid system has been
investigated [6], and particle-mesh accumulation in each grid can be performed by the standard bilinear PIC
volume-weighting method [3,7]. Adaptive mesh refinement to particle-in-cell simulations has been applied to
plasmas and beams [8]. However, we show that particle-mesh accumulation becomes non-trivial for the inter-
face nodes between two grids.

Our ultimate goal is to investigate metal plasma-immersion ion implantation and deposition on a sharp
cone mounted on top of a disc-shaped target that is supported by a thin rod, similar to previous work
[9,10]. In metal plasma immersion ion implantation, the nearly fully ionized metal plasma generated from
a cathodic arc has a drifting velocity of 1:3� 104 ms�1 [11] and an average charge state of 2.03 [9,12]. The
electrons are in thermal equilibrium with a temperature of a few eV. Negative voltage pulses of a few to tens
of kV are applied to the sample stage implanting the metal ions into the sample that sits on top of the stage.
During the pulse-off periods, the ions are deposited on the sample surface and the whole process is referred to
as Metal Plasma Immersion Ion Implantation and Deposition (MePIIID). The MePIIID on a disc-shaped
sample stage was numerically simulated by the PIC method using a regular grid of 2 mm · 2 mm cells in
two dimensions r–z cylindrical coordinates. Due to the axisymmetry of the problem, it is natural to use
r–z cylindrical coordinates. The numerically estimated steady state ion sheath fitted well with the analytical
Child–Langmuir law [2]. MePIIID of a cone placed on top of a disc-shaped sample stage was also numerically
simulated by the PIC method with a regular grid of cell size 2 mm · 2 mm [1]. The 2 mm grid chosen was of
sufficient resolution to simulate the motion of the ions in the plasma, but with this geometric resolution the
cone tip was represented by a single point, leading to an anomalous electric field. To properly investigate the
MePIIID of a cone we require the cone tip to be distributed over several grid points in a curved arc. Conse-
quently, to correctly model this geometry we need a finer grid, which comes at a great computational cost. In
order to resolve the tip region of the cone and maintain the 2 mm resolution for the rest of the simulated
region, a three-level multiple-grid system of cell size 0.5, 1.0 and 2.0 was applied. We do not apply a fine grid
of cell size 0.5 mm to the entire simulation region because of the high computational cost this would require,
and the resolution obtained from the 2 mm grid had been shown to be sufficient to model plasma sheath phe-
nomena [1].

In this paper, we focus on the establishment of a new algorithm for charge-deposition using multiple-grids
in PIC simulations. In particular, we demonstrate the shortcomings of weighting a particle to the four nodes at
the corners of the host cell. By addressing these shortcomings, we present another method and show that the
results obtained from this second method are in agreement with previous work [1]. Systematic errors in cylin-
drical coordinates [13] further complicate calculations at each grid interface. A detailed study of these system-
atic errors has been performed by working from first principles [14]. We too use first principles to find a
natural method of dealing with grid interfaces to obtain a method that can be used in one or two-dimensional
PIC simulations in cylindrical coordinates.
2. One-dimensional PIC

In one-dimensional PIC simulations on a uniform grid in cylindrical coordinates, a systematic error has
been described in Ref. [13]. This systematic error has been resolved in linear weighing, and can be extended
to any weighting function [14]. In linear weighting, particles are weighted to the nodes in proportion to the
distances between the particle and the nodes. In area-weighting [7], they are weighted in proportion to
the areas swept out by revolving these distances about the origin. It is natural to use area-weighting
as the axisymmetric geometry is implicit in the weighting function. To correct the systematic error, the
effective area Vj of a node is calculated by weighting to the mesh using the same algorithm as the charge
weighting [14],
V j ¼ aþ b ð1aÞ
where a is an integral over the cell to the left of the node, and b the right.



Fig. 1.
nodes)
simula

810 C. Cornet, D.T.K. Kwok / Journal of Computational Physics 225 (2007) 808–828
a ¼
Z rj

rj�1

2pr
r2 � r2

j�1

r2
j � r2

j�1

dr ¼ p
2
ðr2

j � r2
j�1Þ ð1bÞ

b ¼
Z rjþ1

rj

2pr
r2

jþ1 � r2

r2
jþ1 � r2

j
dr ¼ p

2
ðr2

jþ1 � r2
j Þ ð1cÞ
The effective area is then
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The expressions derived here from area-weighting are simpler than those derived from linear weighting (Eqs.
(19)–(21) in [14]). The above corrections to the effective area calculations were implemented and tested using a
non-uniform grid in cylindrical coordinates. The results with a varying numbers of PIC particles in a uniform
distribution, with an irregular grid are shown in Fig. 1. We see that using 100 particles in the simulation cre-
ates an error that peaks at around 4% in this particular case. More importantly, as the number of particles
used increases, the maximum error drops quickly and the result converges towards the expected result for a
uniform particle distribution. This convergence roughly scales as the square root of the average number of
particles in each cell.

A particle receives an electric field contribution from the two nodes on either side of it. For instance, in
Fig. 2, the particle p lies between the nodes j and j + 1, therefore
Ep ¼ E0j þ E0jþ1 ð3aÞ

Each contribution is scaled by the same volume weighting shape function above. This is done to ensure the
conservation of momentum and consequently avoid a self-force acting on the particles [3]. Therefore, for
area-weighting
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Fig. 2. A particle p positioned between the nodes j and j + 1 weights its density to these two nodes; and the electric field calculated at each
of these nodes contributes to the electric field of the particle.
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The area-weighting method differs from linear interpolation in that the interpolated electric field is not a linear
function of distance, as it should be in some cases, such as a uniform charge distribution. The deviation from
linear interpolation is not dependent on cell size or number of particles, but is dependent on the number of
cells from the central axis. The peak relative error of the area-weighting method in a linear field is
Fig. 3
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where n is the number of whole cells away from the central axis. For the centermost cell ðn ¼ 0Þ where this
equation breaks down, the relative error at a given position approaches unity as the position approaches
the central axis. Nonetheless, for all other cells the relative error remains below 6%.
3. Volume-weighting in 2D cylindrical coordinates (r–z)

In two dimensions, the r–z plane is discretized by a uniform lattice of nodes. We use the same area-weight-
ing method discussed in the previous section, but add the z-dimension thereby making it volume-weighting. In
standard two-dimensional bilinear PIC weighting the particles in each cell are weighted to the four corner
nodes of the cell [3]. The node (j,k) in Fig. 3, is on the corner of cells labeled A, B, C and D; and the charge
density attributed to (j,k) is accumulated from each of these four cells
nj;k ¼
NA þ NB þ N C þ ND

aþ bþ cþ d
ð5aÞ
The charge contributions NA from the PIC particles np(r,z) of an arbitrary continuum particle distribution in
the A cell within the four cells are [14]
. In the standard method of bilinear weighting, each cell weights to its four corner nodes. Therefore the node (j,k) receives
utions from each of the A, B, C and D cells.
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and likewise for the B, C and D cells. The contribution to the effective volume of the node can also be calcu-
lated [14]. The A cell has a contribution of
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and similarly for the B, C and D cells. Thus for a uniform grid, the denominator in Eq. (5a) becomes
aþ bþ cþ d ¼ p
4
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4. Multiple-grid and standard PIC weighting in 2D cylindrical coordinates (r–z)

In a multiple-grid system, a problem arises at the interface between two grids. In Fig. 4, a coarse grid is
joined to a fine grid of half the cell-size. We see that there are two types of interface nodes, the node (j,k)
is one type and the node (j,k + 1) is another. The node (j,k) is at the corner of four cells: A, B 0, C and D 0.
Therefore by the standard bilinear weighting method, the PIC particles will only weight to the corners of
the host cell, thus the particles in these four cells will contribute to the density of node (j,k). That is
nj;k ¼
N A þ N 0B þ NC þ N 0D

aþ b0 þ cþ d 0
ð6aÞ
The contributions from the A and C cells are the same as the uniform grid case. However, the B 0 and D 0 cell
contributions are modified to include the whole cell, which are twice as large in each dimension. The equations
for the contributions from these cells are modified to
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At a multiple-grid interface, some nodes, e.g. (j,k), are at the corner of four cells, and other nodes, e.g. (j,k + 1), are at the corner of
lls. As cells weight to their four corners in the standard method, then the former receive contributions from four cells, and the latter
contributions from only two cells.
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and the effective volumes are
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The node (j,k + 1) in Fig. 4 is another type of node, it is at the corner of only the A and E cells and not the
B 0 cell. By the standard bilinear weighting method, the particles in the B 0 cell weight only to the corners of the
B 0 cell, therefore the node (j,k + 1) will not be weighted to by the particles within the B 0 cell. Thus density at
this node is accumulated from only the A and E cells, that is,
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To test the validity of this method which corresponds to standard bilinear weighting, a cylindrical simula-
tion chamber of radius 5 cm and height 10 cm was injected with a drifting uniform plasma from the top of the
chamber, represented by a uniform particle distribution npðr; zÞ ¼ 2prn0, [14] of density of n0 ¼ 6� 1015 m�3.
A typical value for the drift velocity was used [9], vz ¼ �1:3� 104 ms�1. Due to axisymmetry of the problem,
the chamber was simulated in two-dimensional (r–z) cylindrical coordinates. The coarsest mesh had a grid
spacing of 2 mm · 2 mm, this was refined to a medium-sized mesh of 1 mm · 1 mm at r 6 3 cm, which had
a further refined patch: r 6 1 cm, 2 cm 6 z 6 6 cm, where the grid spacing was 0.5 mm · 0.5 mm. As the pur-
pose of this numerical test was to validate the described particle to grid weighting method, the electric field
was not calculated nor weighted back to the particles. That is, the particles were simply drifting by their
own momentum. The finest cells had 3 · 3 PIC particles uniformly spaced in them and the coarsest cells
had 12 · 12 particles in them, the time step used was 0.92 ns. The particles were injected into the simulation
region in the negative z-direction from the top, and were allowed to exit the simulation region from the right-
hand side and the bottom. The results showed the expected analytic solution of a uniform plasma density
throughout the entire chamber. However, in real plasma simulations using a drifting plasma obtained by a
cathodic arc [9,12], the particles spread from the z-axis. Therefore it was important to have a test where
the particles were injected with a slight radial velocity. The analytic result for the plasma density in this sit-
uation is
nðr; zÞ ¼ max 0; n0 1þ vr

vz

Zmax � z
r

� �� �
ð8Þ
where n0 is the density of the plasma being injected into the system, Zmax is the z-position of the top of the
simulation region, and (vr,vz) is the r- and z-components of the initial ion velocity. The above mentioned stan-
dard method was tested with a radial velocity of zr = 65 ms�1 and other parameters the same as in the uniform
plasma simulation: vz ¼ �1:3� 104 ms�1, n0 ¼ 6� 1015 m�3 and Zmax = 10 cm. Even in this simple expanding
plasma simulation, a problem is evident near the grid interfaces (Fig. 5).

As shown in Fig. 5, at the boundary between the grids, the plasma density was not uniform. A plot of
density along the vertical interfaces (Fig. 6) better shows the anomaly. The values alternate between two lines,
which suggests that as the two types of interface nodes depicted in Fig. 4 had different weighting systems,
then the calculations did not yield a similar result. The method clearly needed to be modified, and we aimed
to find a method that deals with both types of interface nodes equally – thereby not displaying this even-odd
pattern.
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5. Corrected multiple-grid weighting in 2D cylindrical coordinates (r–z)

As depicted in Fig. 7, we divided the large B 0 cell in Fig. 4 into two half-cells: B00 and F. The node (j,k) in
Fig. 7 is at the corner of two cells A and C, and two half-cells B00 and D00. Thus,
nj;k ¼
N A þ N 00B þ NC þ N 00D

aþ b00 þ cþ d 00
ð9aÞ
The particle contributions from the cells A and C are described in Eqs. 4(a–d) and the particle contributions
from the two half-cells, B00 and D00 are
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Just as the node (j,k) is at the corner of two cells and two half-cells, the node (j,k + 1) is also at the corner of
two cells A and E, and two half-cells B00 and F
nj;kþ1 ¼
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A particle in the F half-cell, for instance, is weighted to the nodes on the left, (j,k + 2) and (j,k + 1), by the
half-cell weighting method described above. The nodes to the right do not see the half-cells, they see only the
whole B 0 cell in Fig. 4. Consequently, the nodes that this particle is weighted to are the nodes that form
the right-hand corners of the B 0 cell, the nodes (j + 2,k + 2) and (j + 2,k). Therefore, each particle is weighted
to exactly four nodes.

This corrected method was tested in the simple expanding-plasma simulation. All plasma parameters were
kept the same as the test described in the previous section, and the grids were arranged as per Fig. 5. The
results in Fig. 8 show a remarkable improvement in the new particle to grid weighting method.

6. Electric field calculation and interpolation in multiple-grid 2D cylindrical coordinates (r–z)

The Poisson equation was solved within each grid using the standard five-point relaxation method with
electrons following the Boltzmann distribution [2,15]. This involves obtaining the discrete version for the
Laplace operator in axisymmetric cylindrical coordinates
Fig. 8.
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This has a second-order truncation error. At the interfaces, the Poisson equation was also solved using a five-
point method, but on an irregular grid. In this case, the discrete Laplace operator becomes
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As previously mentioned, there are two types of interface nodes. The stencil used for the two types of nodes
is depicted in Fig. 9. For the nodes that do not have a neighbor in the coarse grid, a virtual node is created.
The potential of the virtual node is linearly interpolated from the two nodes it neighbors. These five-point
relaxation schemes are iterated over all nodes in the entire simulation region until convergence is reached.
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Fig. 9. The stencils used for solving the Poisson equation at the interface. The open circle is the virtual node.
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The electric field is found by performing discrete partial differentiation in each direction. In a uniform grid,
the electric field is interpolated back to the particle by the same weighting method used to weight the particles
to the grid [3]. We correspondingly do the same with the corrected method. The electric field contribution from
the nodes to the left is weighted by the half-cell weighting method, i.e. in proportion to the F cell in Fig. 7; and
the electric field contribution from the nodes to the right is weighted by the whole-cell weighting method, i.e. in
proportion to the B 0 cell in Fig. 4.

As the particle is weighted to four nodes, the electric field on the particle is interpolated back from the same
four nodes,
Ep ¼ E0j;kþ2 þ E0j;kþ1 þ E0jþ2;kþ2 þ E0jþ2;k ð13aÞ
where the contributions from the four nodes are
E0j;kþ2 ¼ Ej;kþ2

ðr2
jþ2 � r2

pÞ � ðzp � zkþ1Þ
ðr2

jþ2 � r2
j Þ � ðzkþ2 � zkþ1Þ

ð13bÞ

E0j;kþ1 ¼ Ej;kþ1

ðr2
jþ2 � r2

pÞ � ðzkþ2 � zpÞ
ðr2

jþ2 � r2
j Þ � ðzkþ2 � zkþ1Þ

ð13cÞ

E0jþ2;kþ2 ¼ Ejþ2;kþ2

ðr2
p � r2

j Þ � ðzp � zkÞ
ðr2

jþ2 � r2
j Þ � ðzkþ2 � zkÞ

ð13dÞ

E0jþ2;k ¼ Ejþ2;k

ðr2
jþ2 � r2

pÞ � ðzkþ2 � zpÞ
ðr2

jþ2 � r2
j Þ � ðzkþ2 � zkÞ

ð13eÞ
7. Self-force analysis

The self-force of the new method presented here can be analyzed by deriving the total momentum of the
demonstrating system [3]. The force on a PIC macro-particle can be written as
F r;z ¼ npðr; zÞEp ð14Þ
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where npðr; zÞ is the particle’s charge and Ep is the electric field strength interpolating from the adjacent nodes.
The total change of momentum can be calculated as
dP
dt
¼
Z

V
F r;z dV ð15Þ
where V is the volume of the simulation region. In our proposed scheme, the PIC particles on either side of the
interface have different weighting schemes. The particles in the coarser cells weight in proportion to the whole
cell, whereas the particles in the finer cell follow the half-cell method. These must be treated separately
dP
dt
¼
Z finer

cells

V
npðr; zÞEp dV þ

Z coarser
cells

V
npðr; zÞEp dV ð16Þ
According to our scheme, the electric field at the nodes is interpolated back to the particles in two different
ways
dP
dt
¼
Z finer

cells

V
npðr; zÞ

Xadjacent

j;k

E0j;k dV þ
Z coarser

cells

V
npðr; zÞ

Xadjacent

j;k

E0j;k dV ð17Þ
Particles in the finer cells are treated similarly to the particles in a uniform grid. Thus, for example a particle in
the B cell in Fig. 3, the interpolated electric fields can be written as
E0j;k ¼ Ej;k

ðr2
jþ1 � r2

pÞ � ðzkþ1 � zpÞ
ðr2

jþ1 � r2
j Þ � ðzkþ1 � zkÞ

ð18aÞ

E0j;kþ1 ¼ Ej;kþ1

ðr2
jþ1 � r2

pÞ � ðzp � zkÞ
ðr2

jþ1 � r2
j Þ � ðzkþ1 � zkÞ

ð18bÞ

E0jþ1;k ¼ Ejþ1;k

ðr2
p � r2

j Þ � ðzkþ1 � zpÞ
ðr2

jþ1 � r2
j Þ � ðzkþ1 � zkÞ

ð18cÞ

E0jþ1;kþ1 ¼ Ejþ1;kþ1

ðr2
p � r2

j Þ � ðzp � zkÞ
ðr2

jþ1 � r2
j Þ � ðzkþ1 � zkÞ

ð18dÞ
where Ej;k; Ej;kþ1; Ejþ1;k; Ejþ1;kþ1 are the electric fields of the four adjacent nodes of the cell. For a par-
ticle in a coarser cell, for example in the F half-cell of Fig. 7, the interpolated electric fields can be writ-
ten as
E0j;kþ2 ¼ Ej;kþ2

ðr2
jþ2 � r2

pÞ � ðzp � zkþ1Þ
ðr2

jþ2 � r2
j Þ � ðzkþ2 � zkþ1Þ

ð19aÞ

E0j;kþ1 ¼ Ej;kþ1

ðr2
jþ2 � r2

pÞ � ðzkþ2 � zpÞ
ðr2

jþ2 � r2
j Þ � ðzkþ2 � zkþ1Þ

ð19bÞ

E0jþ2;kþ2 ¼ Ejþ2;kþ2

ðr2
p � r2

j Þ � ðzp � zkÞ
ðr2

jþ2 � r2
j Þ � ðzkþ2 � zkÞ

ð19cÞ

E0jþ2;k ¼ Ejþ2;k

ðr2
jþ2 � r2

pÞ � ðzkþ2 � zpÞ
ðr2

jþ2 � r2
j Þ � ðzkþ2 � zkÞ

ð19dÞ
where Ej;kþ2; Ej;kþ1; Ejþ2;kþ2 and Ejþ2;k are the electric fields of the four adjacent nodes, according to the half
cell weighting scheme, of the boundary cell as depicted in Fig. 7.

By changing the order of the sum and integral in (17), we have
dP
dt
¼
Xregular
nodes

j;k

Ej;kðNA þ N B þ N C þ NDÞ þ
Xinterface
nodes

j;k

Ej;kðN A þ N B00 þ N C þ N D00 Þ ð20Þ
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For a regular node (j,k), as depicted in Fig. 3,
NA ¼
Z zkþ1

zk

Z rj

rj�1

npðr; zÞ
ðr2 � r2

j�1Þ � ðzkþ1 � zÞ
ðr2

j � r2
j�1Þ � ðzkþ1 � zkÞ

dr dz ð21aÞ

NB ¼
Z zkþ1

zk

Z rjþ1

rj

npðr; zÞ
ðr2

jþ1 � r2Þ � ðzkþ1 � zÞ
ðr2

jþ1 � r2
j Þ � ðzkþ1 � zkÞ

dr dz ð21bÞ

NC ¼
Z zk

zk�1

Z rj

rj�1

npðr; zÞ
ðr2 � r2

j�1Þ � ðz� zk�1Þ
ðr2

j � r2
j�1Þ � ðzk � zk�1Þ

dr dz ð21cÞ

ND ¼
Z zk

zk�1

Z rjþ1

rj

npðr; zÞ
ðr2

jþ1 � r2Þ � ðz� zk�1Þ
ðr2

jþ1 � r2
j Þ � ðzk � zk�1Þ

dr dz ð21dÞ
For an interface node (j,k), as depicted in Fig. 7,
NA ¼
Z zkþ1

zk

Z rj

rj�1

npðr; zÞ
ðr2 � r2

j�1Þ � ðzkþ1 � zÞ
ðr2

j � r2
j�1Þ � ðzkþ1 � zkÞ

dr dz ð22aÞ

NB00 ¼
Z zkþ1

zk

Z rjþ2

rj

npðr; zÞ
ðr2

jþ2 � r2Þ � ðzkþ1 � zÞ
ðr2

jþ2 � r2
j Þ � ðzkþ1 � zkÞ

dr dz ð22bÞ

NC ¼
Z zk

zk�1

Z rj

rj�1

npðr; zÞ
ðr2 � r2

j�1Þ � ðz� zk�1Þ
ðr2

j � r2
j�1Þ � ðzk � zk�1Þ

dr dz ð22cÞ

ND00 ¼
Z zk

zk�1

Z rjþ2

rj

npðr; zÞ
ðr2

jþ2 � r2Þ � ðz� zk�1Þ
ðr2

jþ2 � r2
j Þ � ðzk � zk�1Þ

dr dz ð22dÞ
Inserting the effective volume of individual nodes, we have
dP
dt
¼
Xregular
nodes

j;k

V j;kEj;knj;k þ
Xinterface
nodes

j;k

V j;kEj;knj;k ð23Þ
where nj;k is the charge density at the node (j,k). For a regular node as depicted in Fig. 3,
V j;k ¼
p
4
ðr2

jþ1 � r2
j�1Þðzkþ1 � zk�1Þ ð24Þ
For a boundary node as depicted in Fig. 7
V j;k ¼
p
4
ðr2

jþ2 � r2
j�1Þðzkþ1 � zk�1Þ ð25Þ
Therefore, the expression for the change of momentum (Eq. (20)) has no weighting function present. The
self-force as described in Ref. [3] is eliminated as the question of momentum change is reduced to the prop-
erties of the calculation of the electric field from the charge density. In the following section, we discuss other
sources of spurious self-forces, including the effect of the electric field calculation, by looking at a system with
a single PIC particle.

8. Spurious self-forces in a single PIC particle system

A spurious self-force was observed in mesh refinement for particle-in-cell plasma simulations [16]. To inves-
tigate the presence of this spurious force, we have performed tests similar to Ref. [16], by putting a macropar-
ticle into a rectangular grid (mother) with a fine grid in rectangular coordinates. The mother grid had a cell
size of dx = dy =1 mm. It consisted of 64 cells along the x-axis between x ¼ 0:0 and x ¼ 0:064 m, and 64 cells
along the y-axis between y ¼ 0:0 and y ¼ 0:064 m. A fine grid was framed in the center of the mother gird with
cell size of dx = dy = 0.5 mm. It consisted of 64 cells along the x-axis between x ¼ 0:016 and x ¼ 0:048 m, and
64 cells along the y-axis between y ¼ 0:016 and y ¼ 0:048 m. The macroparticle was initially placed at
x ¼ 0:01775 and y = 0.032 m, which is 4 fine cells away from the coarse-fine interface in the x-direction. An
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argon macroparticle of atomic mass 40 amu and charge state of +1 was put into the test. The macroparticle
carried a total charge of 2:5� 109 e, and the time step used was 1 ns. The mother grid was surrounded by four
grounded walls, i.e. the potential of the nodes at the edge of the simulation region was set to zero. At the inter-
face between the coarse and fine grids (x ¼ 16 mm) we use the three-point method of calculating the electric
field
Fig. 10
describ
(0.5 m
Exðx ¼ 16 mmÞ ¼ � 4/ðx ¼ 16:5 mmÞ � 3/ðx ¼ 16 mmÞ � /ðx ¼ 15 mmÞ
6h

þOðh2Þ ð26Þ
where h = 0.5 mm.
When the macroparticle reached the edge of the simulation region, it is reflected back into the simulation

region. Two tests were also performed in a single grid system with cell size of 0:5� 0:5 mm2 and
1:0� 1:0 mm2. The finer single grid consisted of 128 · 128 cells and the coarse grid consisted of 64 · 64 cells.

The trajectories of the macroparticle are depicted in Fig. 10. Using the multiple-grid method and the three-
point formula (Eq. (26)) for the electric field, the macroparticle experienced a spurious self-force and was
pushed back into the fine region when it approached the interface. We can also calculate the electric field
at the interface by looking only at the two points one coarse cell size away in both directions, i.e.
Exðx ¼ 16 mmÞ ¼ �/ðx ¼ 17 mmÞ � /ðx ¼ 15 mmÞ
4h

þOðh2Þ ð27Þ
This also led to a spurious self-force that pushed the particle back into the fine grid, this has also been depicted
in Fig. 10. However, when the electric field along the x-direction at the interface node (x = 16 mm, y = 32 mm)
is changed to a first-order accurate two-point finite difference equation
Exðx ¼ 16 mmÞ ¼ �/ðx ¼ 16:5 mmÞ � /ðx ¼ 15 mmÞ
3 h

þOðhÞ ð28Þ
the macroparticle did not bounce at the boundary as depicted in Fig. 10. Although Eq. (28) is only first-order
accurate, the global effects of this are small and localized to the interface. When the particle is in the coarse
grid, we use a second-order formula with truncation error proportional to the square of the coarser grid size,
and only at the two cells adjacent to the interface do we use the first-order formula with truncation error pro-
portional to the fine grid size. As interface is only a very small part of the simulation region, then particle
Time ( s)
0 10

x 
p

o
si

ti
o

n
 (

m
m

)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Eq. (28)
Eq. (26)
Eq. (27)
Single-grid (fine)
Single-grid (coarse)

1 2 3 4 5 6 7 8 9

. The trajectory of a macroparticle as it falls towards the wall at x ¼ 0 using various methods of calculating the electric field
ed in the text (Eqs. (26)–(28)). Also pictured are the reference cases, a single coarse (1 mm · 1 mm) grid and a single fine

m · 0.5 mm) grid.
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spends very little time in this region, so overall this single PIC particle system is roughly second-order accu-
rate. Furthermore, in a single PIC particle system, the potential has a very large gradient, which amplifies
anomalies obtained from electric field calculations. In Fig. 11 we have positioned a single PIC particle at
x-positions between 14 and 17 mm, and calculated the electric field at the nodes using three different methods
described in Eqs. (26)–(28). We see in Fig. 11 that using a second-order formula does not alleviate this prob-
lem. We will show in the following paragraph that using a higher-order equation to calculate the electric field
does not mitigate the problem even when using a single grid.

To illustrate the effect of the choice of electric field formula, a single fine grid system of cell size 0:5� 0:5 mm2

was considered. When the macroparticle of total charge 2:5� 109 e was placed at x = 17.875 mm and y =
32.0 mm, an ion density of 2:5� 1015 m�3 was assigned to the node on its left (x = 17.5 mm, y = 32.0 mm)
and an ion density of 7:5� 1015 m�3 was assigned to the node on its right (x = 18.0 mm, y = 32.0 mm). The
potential at the four nodes at x = 17.0 mm, 17.5 mm, 18.0 mm and 18.5 mm (y = 32.0 mm) were calculated
by solving the Poisson equation, and are plotted in Fig. 12(a). The electric field, Ex, at the nodes x =
17.5 mm and x = 18.0 mm can be calculated by a two-point finite difference equation
Fig. 11
electric
Exðx ¼ 17:5 mmÞ ¼ �/ðx ¼ 18:0 mmÞ � /ðx ¼ 17:0 mmÞ
2h

þOðh2Þ ð29Þ

Exðx ¼ 18 mmÞ ¼ �/ðx ¼ 18:5 mmÞ � /ðx ¼ 17:5 mmÞ
2h

þOðh2Þ ð30Þ
An alternative is to use a four-point finite difference equation, see Appendix 2.
Exðx ¼ 17:5 mmÞ ¼ ��/ðx ¼ 18:5 mmÞ þ 6/ðx ¼ 18:0 mmÞ � 3/ðx ¼ 17:5 mmÞ � 2/ðx ¼ 17:0 mmÞ
6h

þOðh3Þ ð31Þ

Exðx ¼ 18 mmÞ ¼ � 2/ðx ¼ 18:5 mmÞ þ 3/ðx ¼ 18:0 mmÞ � 6/ðx ¼ 17:5 mmÞ þ /ðx ¼ 17:0 mmÞ
6h

þOðh3Þ ð32Þ
As seen in Fig. 12, the four-point method generated an electric field strength 4799 V/m less than the two-point
method at the same two nodes. The macroparticle received a linearly interpolated electric field strength of
�118.497 V/m from the two-point method but a considerably greater electric field of �4918.38 V/m from
the four-point method. When the macroparticle was placed exactly between the two nodes (x = 17.75 mm),
both the nodes receive an ion density of 5� 1015 m�3 from the macroparticle, and both methods gave the same
electric field strength at the nodes (Fig. 12(b)). The interpolated electric field strength at the particle was
�120.27 V/m. When the macroparticle was placed further downwards at x ¼ 17:625 mm, a large difference
in electric field strength between the two methods was again observed (Fig. 12(c)). An ion density of
x position (mm)
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. The electric field gathered at a single PIC particle in a multiple-grid system as a function of its position. Three different methods of
field calculation (Eqs. (26)–(28)) are compared. The grey vertical lines represent the positions of the nodes.



Fig. 12. The node potential (circle), electric field strengths as calculated by the two-point (square) and four-point methods (triangle) at
different location (a) x = 17.875 mm, (b) x = 17.75 mm and (c) x = 17.625 mm. The electric field strength interpolated at macroparticle
position by the two methods is also shown.
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7:5� 1015 m�3 was assigned to the left node (x ¼ 17:5 mm, y ¼ 32 mm) and an ion density of 2:5� 1015 m�3

was assigned to the right node (x ¼ 18:0 mm, y ¼ 32 mm). The macroparticle received an interpolated electric
field of �122.03 V/m from the two-point method but astonishingly received a positive electric field strength of
4677.88 V/m from the four-point method. Letting go of a macroparticle initially placed at x = 17.875 mm and
y = 32 mm with V x ¼ V y ¼ 0:0, the electric field strength calculated by a two-point method will gradually
accelerate the macroparticle towards the negative x-direction, as it should. However, the electric field strength
calculated by a more accurate, in principle, four-point method may trap the macroparticle within the cell re-
gion between x = 17.5 mm and x = 18.0 mm.

In the previous section, the change of momentum has been shown to not be dependent on the weighting
function, so this spurious force is due to the choice of electric field calculation. In a single PIC particle system,
the potential has a large gradient on each side of the particle, which leads to a systematic anomaly in the cal-
culated electric field. In a system where the plasma is represented by many wide-spread PIC particles, the
charge is more evenly spread out by the particles so the calculated potential is much smoother, which dampens
the anomaly obtained when using Eq. (26) at a coarse-fine interface. This might not readily apply to a quasi-
neutral/neutral plasma where long range forces are screened and the importance of local fields, and thus any
error done at this range, is larger.
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9. MePIIID on a flat stage

To rigorously test the multiple-grid method proposed above, it was implemented in a study of metal
plasma-immersion ion implantation and deposition (MePIIID) on a flat stage [9,10]. In a simulation chamber
10 cm in radius and 30 cm in height, we constructed a flat stage of radius 3.5 cm and thickness 1.2 cm, which
was held in place by a rod of length 12.0 cm and radius 0.4 cm. A schematic diagram of the simulation is
shown in Fig. 13. It has been shown that the density of a typical titanium plasma produced by cathodic
arc with a background gas pressure of �10�6 Torr is 6� 1015 m�3, has a drift velocity of 1:3� 104 ms�1,
and an average charge state of 2.03 [9,12]. These plasma characteristics were used in the simulations. The ions
were assumed to be collisionless and electrons followed the Boltzmann relation:
Fig. 13
from a
ne ¼ n0 exp
e/
kT e

� �
ð33Þ
where the electron temperature was T e ¼ 2:5 eV. The Boltzmann relation is linearized and the Poisson equa-
tion is solved by relaxation [15]. The grid spacing was 2 mm · 2 mm and was refined to 1 mm · 1 mm in the
region between the stage and the ceiling of the simulated region. A further refined patch, 0.5 mm · 0.5 mm,
was inserted in a small region where r is less than 4 mm; and z lies between 14.5 cm and 22 cm. The electric
field at the boundary was calculated by Eq. (26). The timestep was 0.85 ns. The PIC particles were uniformly
spaced with 9� 9 ¼ 81 particles inserted into the finest cells and 36� 36 ¼ 1296 particles into the coarsest
cells (see Fig. 14). The stage and rod were put at a bias potential of �8 kV and the simulation was run until
a steady-state was reached. The results from the simulation (Fig. 15) were compared to a control simulation,
Simulation
Region

incoming
plasma

. A schematic diagram of the simulation used to test the new method. The plasma from a cathodic arc source drifts downwards
duct. The stage and rod are set to a �8 kV bias, and the outer wall is earthed.
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run with only the coarsest grid (Fig. 16). Both the sheath shape and position are similar in the multiple-grid
and control runs. The 6� 1015 m�3 and 0 m�3 contours did differ slightly, but these differences in density are
less than 1%. The main feature is the equilibrium steady state ion sheath shape and position [9], which remains
at z ¼ 16 cm in both cases (Figs. 15 and 16).

As the Poisson equation solver along the interface nodes has a first-order truncation error, it is important to
ensure that this loss in accuracy is kept small. The leading term in the truncation error for the Laplace oper-
ator nodes at the interface is
dzþ � dz�

3

o3U
oz3
þ drþ � dr�

3

o3U
or3
� drþ � dr�

2

1

r
o2U
or2

ð34Þ
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Fig. 16. The results obtained from a single grid (2 mm · 2 mm) simulation. The numbers on the contour lines represent multiples of
1015 m�3.
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This is first-order in the change of grid size, thus for a grid refinement factor of two, as was used in this sim-
ulation, this is first-order in the finer grid spacing. The adjoining nodes in the coarse grid are have a second-
order truncation error, the leading term is
dz2

12

o4U
oz4
þ dr2

12

o4U
or4
þ dr2

6

1

r
o3U
or3

ð35Þ
however, this is second-order in the larger grid spacing. Upon substitution of numbers obtained from the sim-
ulation, we observed that the first-order truncation error term in the interface nodes (Eq. (34)) was comparable
to the second-order truncation error term in the coarse nodes neighboring the interface (Eq. (35)).

10. Conclusion

An algorithm for weighting particles to nodes near interfaces between coarser and finer grids in a multiple-
grid PIC system is described in two-dimensional (r–z) cylindrical coordinates. The method divides the cells on
the coarser side of the interface into half-cells, which are used in the weighting of particles to nodes. The use of
half-cells is more natural than weighting to the cell corners as it treats the nodes along the interface equally.
The method assumes that the grid spacing of the coarser grid is double that of the finer grid, a gradual tran-
sition of cell size is required for a good model as the leading term of the truncation error at the interface scales
as the change in grid size. The volume weighting method was used in this study as it is similar to the standard
bilinear PIC method in Cartesian coordinates, but with areas rotated about the z-axis. As the volume weight-
ing method has the axisymmetric geometry built in, it too is a natural system in this particular case. We have
demonstrated a spurious self-force for the case when the potential gradient is large near the seam between the
coarse and fine grids. We believe the origin of the self-force lies in the discontinuity in resolution introduced by
the refinement, which affects both the method presented in Ref. [8] and the one presented in this paper. The
algorithm was tested in MePIIID of a flat stage. The mesh consisted of three cell sizes of 0.5 · 0.5, 1 · 1 and
2 · 2 mm. The simulated equilibrium steady state ion sheath was equal to the result obtained by single grid of
cell size 2 · 2 mm. We have used this method to simulate the problem of MePIIID on a cone and tip, which
brought a measurable gain in accuracy by spatially resolving the sharp tip without significantly increasing the
computational cost of the simulation. The simulation results have been published in IEEE Transactions on
Plasma Science [17].
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Appendix 1

For a horizontal interface with a coarse grid above and a fine grid below, as pictured in Fig. A.1. Eqs. (9)
become
nj;k ¼
N A þ N 00B þ NC þ N 00D

aþ b00 þ cþ d 00
ðA1:1aÞ

N 00B ¼
Z zkþ2

zk

Z rjþ1

rj

npðr; zÞ
ðr2

jþ1 � r2Þ � ðzkþ2 � zÞ
ðr2

jþ1 � r2
j Þ � ðzkþ2 � zkÞ

dr dz ðA1:1bÞ

N 00D ¼
Z zkþ2

zk

Z rj

rj�1

npðr; zÞ
ðr2 � r2

j�1Þ � ðzkþ2 � zÞ
ðr2

j � r2
j�1Þ � ðzkþ2 � zkÞ

dr dz ðA1:1cÞ

b00 ¼
Z zkþ2

zk

Z rjþ1

rj

2pr
ðr2

jþ1 � r2Þ � ðzkþ2 � zÞ
ðr2

jþ1 � r2
j Þ � ðzkþ2 � zkÞ

dr dz ðA1:1dÞ

d 00 ¼
Z zkþ2

zk

Z rj

rj�1

2pr
ðr2 � r2

j�1Þ � ðzkþ2 � zÞ
ðr2

j � r2
j�1Þ � ðzkþ2 � zkÞ

dr dz ðA1:1eÞ
Just as the node (j,k) is at the corner of two cells and two half-cells, the node (j + 1,k) is also at the corner of
two cells A and E, and two half-cells B00 and F
nj;kþ1 ¼
NA þ N 00B þ N E þ NF

aþ b00 þ eþ f
ðA1:2aÞ

N F ¼
Z zkþ2

zk

Z rjþ2

rjþ1

npðr; zÞ
ðr2

jþ2 � r2Þ � ðzkþ2 � zÞ
ðr2

jþ2 � r2
jþ1Þ � ðzkþ2 � zkÞ

dr dz ðA1:2bÞ

f ¼
Z zkþ2

zk

Z rjþ2

rjþ1

2pr
ðr2

jþ2 � r2Þ � ðzkþ2 � zÞ
ðr2

jþ2 � r2
jþ1Þ � ðzkþ2 � zkÞ

dr dz ðA1:2cÞ
C A E

FB”D”

(j,k) (j+1,k)(j-1,k)(j-2,k)

(j,k-1)

(j,k+2) (j+2,k+2)

(j+2,k)

(j+1,k-1) (j+2,k-1)(j-1,k-1)

(j-2,k+2)

C A E

FB”D”

(j,k) (j+1,k)(j-1,k)(j-2,k)

(j,k-1)

(j,k+2) (j+2,k+2)

(j+2,k)

(j+1,k-1) (j+2,k-1)(j-1,k-1)

(j-2,k+2)

Fig. A.1. A horizontal interface is treated similarly to a vertical one.
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Appendix 2

The Taylor series’ for the three points i � 2h, i � h and i + h are
/i�2h ¼ /i � 2h
d/i

dx
þ 2h2 d2/i

dx2
� 4

3
h3 d3/i

dx3
þOðh4Þ ðA2:1Þ

/i�h ¼ /i � h
d/i

dx
þ h2

2

d2/i

dx2
� h3

6

d3/i

dx3
þOðh4Þ ðA2:2Þ

/iþh ¼ /i þ h
d/i

dx
þ h2

2

d2/i

dx2
þ h3

6

d3/i

dx3
þOðh4Þ ðA2:3Þ
Adding Eqs. (A2.2) and (A2.3) gives
/iþh þ /i�h ¼ 2/i þ h2 d2/i

dx2
þOðh4Þ ðA2:4Þ
Adding four times Eq. (A2.3) to half of Eq. (A2.1),
8/iþh þ /i�2h ¼ 9/i þ 6h
d/i

dx
þ 6h2 d2/i

dx2
þOðh4Þ ðA2:5Þ
Subtracting Eq. (A2.4) from Eq. (A2.5) six times,
2/iþh þ 3/i � 6/i�h þ /i�2h

6h
¼ d/i

dx
þOðh3Þ ðA2:6Þ
For the nodes on the opposite side of the fine patch, we can simply replace h with �h,
�/iþ2h þ 6/iþh � 3/i � 2/i�h

6h
¼ d/i

dx
þOðh3Þ ðA2:7Þ
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